Worksheet: Newton's Law of Universal Gravitation

ANSWERS

Two students are sitting 1.50 m apart. One student has a mass of 70.0 kg and the other has a mass of 52.0 kg . What is the gravitational force between them?

$$
\begin{aligned}
& F=G \frac{m_{1} m_{2}}{d^{2}} \\
& F=\left(6.67 \times 10^{-11}\right) \frac{(70)(52)}{(1.5)^{2}} \\
& F=1.08 \times 10^{-7} N
\end{aligned}
$$

2.

What gravitational force does the moon produce on the Earth is their centers are $3.88 \times 10^{8} \mathrm{~m}$ apart and the moon has a mass of $7.34 \times 10^{22} \mathrm{~kg}$?

$$
\begin{aligned}
& F=G \frac{m_{1} m_{2}}{d^{2}} \\
& F=\left(6.67 \times 10^{-11}\right) \frac{\left(7.34 \times 10^{22}\right)\left(5.79 \times 10^{24}\right)}{\left(3.88 \times 10^{8}\right)^{2}} \\
& F=1.94 \times 10^{20} N
\end{aligned}
$$

3.

If the gravitational force between objects of equal mass is $2.30 \times 10^{-8} \mathrm{~N}$ when the objects are 10.0 m apart, what is the mass of each object?

$$
\begin{aligned}
& F=G \frac{m_{1} m_{2}}{d^{2}} \\
& 2.30 \times 10^{-8}=\left(6.67 \times 10^{-11}\right) \frac{\mathrm{mm}}{(10)^{2}} \\
& m^{2}=\frac{\left(2.30 \times 10^{-8}\right)(10)^{2}}{\left(6.67 \times 10^{-11}\right)} \\
& m=\sqrt{\frac{\left(2.30 \times 10^{-8}\right)(10)^{2}}{\left(6.67 \times 10^{-11}\right)}} \\
& m=185.7 \mathrm{~kg}
\end{aligned}
$$

4.

Calculate the gravitational force on a $6.50 \times 10^{2} \mathrm{~kg}$ that is $4.15 \times 10^{6} \mathrm{~m}$ above the surface of the Earth?

$$
\begin{aligned}
& F=G \frac{m_{1} m_{2}}{d^{2}} \\
& F=\left(6.67 \times 10^{-11}\right) \frac{\left(6.58 \times 10^{2}\right)\left(5.79 \times 10^{24}\right)}{\left(6.371 \times 10^{6}+4.15 \times 10^{6}\right)^{2}} \\
& F=2340 N
\end{aligned}
$$

The gravitational force between two objects that are $2.1 \times 10^{-1} \mathrm{~m}$ apart is $3.2 \times 10^{-6} \mathrm{~N}$. If the mass of one object is 55 kg what is the mass of the other object?

$$
\begin{aligned}
& F=G \frac{m_{1} m_{2}}{d^{2}} \\
& 3.2 \times 10^{-6}=\left(6.67 \times 10^{-11}\right) \frac{(55) m}{(0.21)^{2}} \\
& m=\frac{\left(3.2 \times 10^{-6}\right)(0.21)^{2}}{\left(6.67 \times 10^{-11}\right)(55)} \\
& m=38.47 \mathrm{~kg}
\end{aligned}
$$

6.

If two objects, each with a mass of $2.0 \times 10^{2} \mathrm{~kg}$, produce a gravitational force between them of $3.7 \times 10^{-6} \mathrm{~N}$. What is the distance between them?
$F=G \frac{m_{1} m_{2}}{d^{2}}$
$3.7 \times 10^{-6}=\left(6.67 \times 10^{-11}\right) \frac{\left(2.0 \times 10^{2}\right)^{2}}{d^{2}}$
$d^{2}=\frac{\left(6.67 \times 10^{-11}\right)\left(2.0 \times 10^{2}\right)^{2}}{\left(3.7 \times 10^{-6}\right)}$
square root both sides
$d=\sqrt{\frac{\left(6.67 \times 10^{-11}\right)\left(2.0 \times 10^{2}\right)^{2}}{\left(3.7 \times 10^{-6}\right)}}$
$d=0.85 \mathrm{~m}$

What is the gravitational force acting on a 70.0 kg object standing on the Earth's surface?

$$
\begin{aligned}
& F=G \frac{m_{1} m_{2}}{d^{2}} \\
& F=\left(6.67 \times 10^{-11}\right) \frac{(70)\left(5.97 \times 10^{24}\right)}{\left(6.37 \times 10^{6}\right)^{2}} \\
& F=687 N
\end{aligned}
$$

8.

What is the gravitational force on a 35.0 kg object standing on the Earth's surface?
(You can use your answer from \#7 to reduce your calculations)

Half of the mass means half of the force (directly proportional)
$1 / 2$ of $687=343.5 \mathrm{~N}$
9.

What is the gravitational force on a 70.0 kg that is $6.38 \times 10^{6} \mathrm{~m}$ above the Earth's surface? (You can use your answer from \#7 to reduce your calculations)

$$
\begin{aligned}
& F=G \frac{m_{1} m_{2}}{d^{2}} \\
& F=\left(6.67 \times 10^{-11}\right) \frac{(70)\left(5.97 \times 10^{24}\right)}{\left(6.371 \times 10^{6}+6.38 \times 10^{6}\right)^{2}} \\
& F=172 N
\end{aligned}
$$

10.

Three objects each with a mass of 10.0 kg are placed in a straight line 50.0 cm apart. What is the net gravitational force on the center object due to the other two?

$$
\begin{aligned}
& F=G \frac{m_{1} m_{2}}{d^{2}} \\
& F=\left(6.67 \times 10^{-11}\right) \frac{(10)(10)}{(0.5)^{2}} \\
& F=2.67 \times 10^{-8} N \\
& \text { To the left }
\end{aligned}
$$

$$
F=G \frac{m_{1} m_{2}}{d^{2}}
$$

$$
\begin{aligned}
& F=\left(6.67 \times 10^{-11}\right) \frac{(10)(10)}{(0.5)^{2}} \\
& F=2.67 \times 10^{-8} N
\end{aligned}
$$

To the right

The net force at B is ON because the two forces cancel each other out.

11.

Three objects A, B, C are placed 50.0 cm apart along a straight line. A and B have a mass of 10.0 kg , while C has a mass of 15.0 kg . What is the net force on B due to A and C ?

$F=G \frac{m_{1} m_{2}}{d^{2}} \quad F=G \frac{m_{1} m_{2}}{d^{2}}$
$F=\left(6.67 \times 10^{-11}\right) \frac{(10)(10)}{(0.5)^{2}} \quad F=\left(6.67 \times 10^{-11}\right) \frac{(15)(10)}{(0.5)^{2}}$
$F=2.67 \times 10^{-8} \mathrm{~N}$
$F=4.0 \times 10^{-8} \mathrm{~N}$
To the left
To the right
The net force is $(4.0+(-2.67)) \times 10^{-8}=1.33 \times 10^{-8} \mathrm{~N}$

